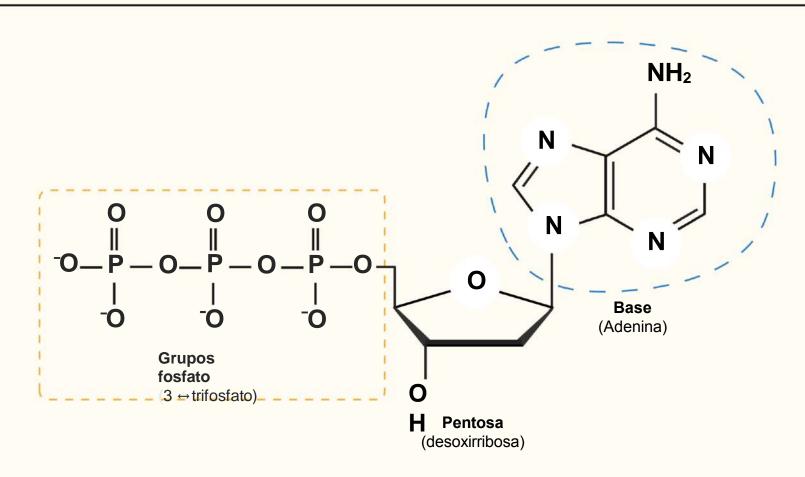


Facultad de Química Genética y Biología Molecular Clave 1630

Tarjetas de Estudio / UNIDAD 3 HERENCIA, DNA y CROMATINA

Prof. Javier Plasencia de la Parra Departamento de Bioquímica, Facultad de Química; UNAM. Proyectos PAPIME PE201017 y PE206021

Tarjetas de Estudio de la Unidad 3


Las diapositivas de este archivo vienen organizadas en pares; la primera tiene una pregunta sobre algún concepto de la Unidad, para responder en formato de opción múltiple (una o varias opciones) o de relacionar columnas. La siguiente diapositiva tiene la respuesta, explicando el concepto, generalmente ilustrada con alguna imagen. Además, en la diapositiva de respuesta hay una pregunta adicional que ayudará a justificar y promoverá trabajo de investigación para reforzar el aprendizaje.

Al final de la presentación, está la clave de respuestas y una lista de fuentes de referencias.

Recomendación: Abrir el archivo pdf en modo de pantalla completa.

1. ¿Cuáles son los componentes que forman un nucleótido?

- A. Una base, una pentosa y un trifosfato
- B. Una base y una pentosa
- C. Una base y un trifosfato
- D. Una pentosa y un trifosfato

Los nucleótidos se componen de:

GRUPOS FOSFATO

1 → Monofosfato

 $2 \rightarrow Difosfato$

3 → Trifosfato

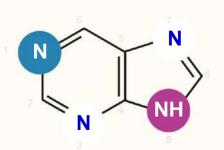
UNA PENTOSA

√ Ribosa (ARN)

✓ Desoxirribosa (ADN)

UNA BASE NITROGENADA

√Puina

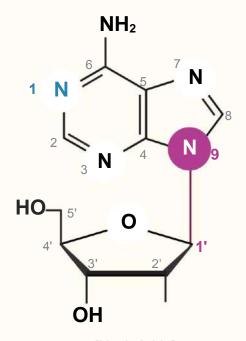

✓Pirimidina

¿Cuál es la diferencia entre nucleótido y nucleósido?

2. ¿Cuáles son las bases tipo purina y cuáles son sus características?

- A. Las purinas son Adenina y Timina
- B. Las purinas son Adenina y Guanina
- C. Las purinas son Timina, Citosina y Uracilo
- D. Las purinas son Guanina y Citosina

LAS BASES **PURINAS** SON **ADENINA Y GUANINA**


✓ Tienen propiedades ácido base protón).

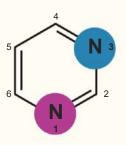
NH₂

(El N1 de la base puede aceptar un

Absorben luz UV a 260 nm

✓ El N9 de las purinas forma un enlace N- glicosídico con el C1' de la pentosa.

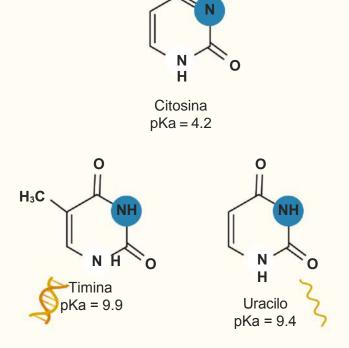
[Nucleósido]

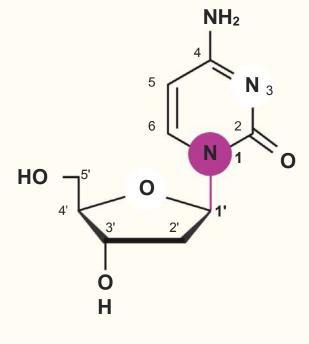

¿Por qué hay tanta diferencia entre los valores de pKa (3.5 vs 9.4)?

3. ¿Cuáles son las bases tipo pirimidina y cuáles son sus características?

- A. Las pirimidinas son Adenina y Timina
- B. Las pirimidinas son Timina y Citosina
- C. Las pirimidinas son Timina, Citosina y Uracilo
- D. Las pirimidnas son Guanina y Citosina

LAS BASES PIRIMIDINAS SON


✓ El N1 de las pirimidinas forma un enlace


CITOSINA, URACILO Y TIMINA

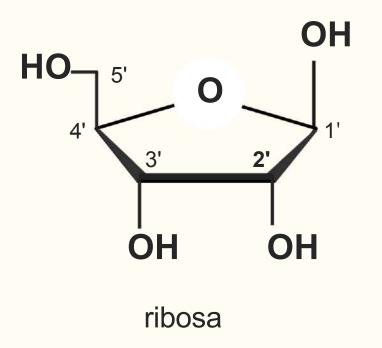
√ Tienen propiedades ácido base (N3):

N-glicosídico con el C1' de la pentosa.

 NH_2

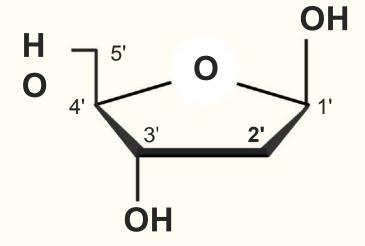
Absorben luz UV a 260 nm

¿Cuál de estas bases forma parte del ARN?


4. ¿En qué se diferencia la ribosa de la desoxirribosa en los ácidos nucleicos?

- A. La ribosa carece de un -OH en el C3'
- B. La ribosa carece de un -OH en el C2'
- C. La desoxirribosa carece de un -OH en el C3'
- D. La desoxirribosa carece de un -OH en el C2'

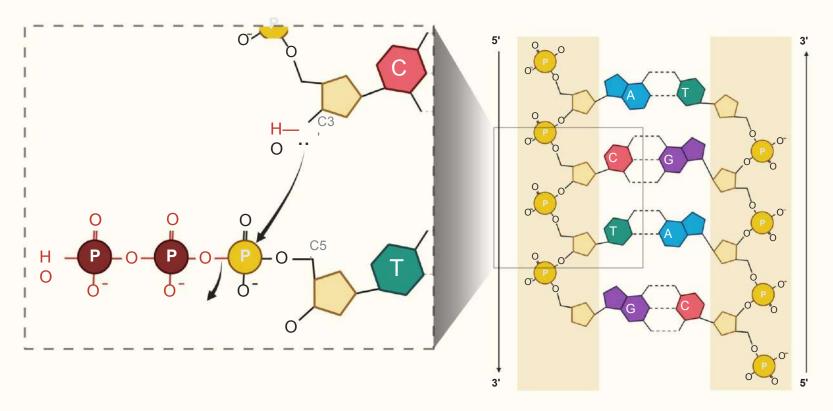
Estas pentosas difieren entre sí por su sustituyente de la posición 2'. En la desoxirribosa, el sustituyente es un átomo de -H


ARN

(C2'- OH) → ribosa

ADN

(C2'- H) →d-ribosa


2' - desoxirribosa

¿Cómo se compara la estabilidad del ARN y el ADN por esta diferencia en la pentosa?

5. ¿Mediante qué tipo de enlace se unen los nucleótidos en la polimerización de los ácidos nucleicos?

- A. Mediante enlaces peptídicos
- B. Mediante puentes de hidrógeno
- C. Mediante enlaces fosfodiéster
- D. Mediante enlaces N-glicosídicos

Los nucleótidos se unen mediante enlaces fosfodiéster.

El hidróxilo (C3'-OH) se une al fosfato α (C5'-P) del nucleótido contiguo (desplazamiento nucleofílico), formando el enlace fosfodiéster y pirofosfato inorgánico (PPi).

¿Cuáles son las propiedades del enlace fosfodiéster?

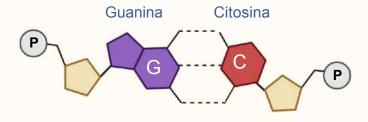
6. ¿Qué establecen las reglas de Chargaff?

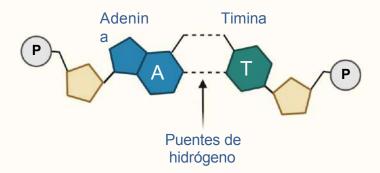
- A. Que en una molécula de ADN de doble cadena, el% Adenina = % Timina
- B. Que en una molécula de ADN de doble cadena, el% Adenina = % Guanina
- C. Que en una molécula de ADN de doble cadena, el% Timina = % Citosina
- D. Que en una molécula de ADN de doble cadena, el% Timina = % Guanina

Las reglas de Chargaff establecen que el ADN de doble cadena de un organismo tiene una relación 1 : 1 de purinas y pirimidinas.

Contenido de PURINAS = Contenido de PIRIMIDINAS

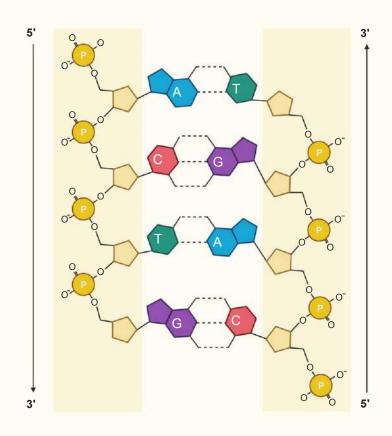
Y más específicamente, que el contenido de:


Si una molécula de ADN de doble cadena, tiene 18% de Adenina, ¿Qué porcentajes (%) de Timina, Citosina y Guanina, tendrá?


7. ¿A qué se refieren las propiedades de complementariedad y antiparalelismo que definen a la doble hélice de ADN?

- A. La complementaridad, a la interacción específica entre dos bases purinas
- B. La complementaridad, a la interacción específica entre dos bases pirimidinas
- C. La complementaridad, a la interacción específica entre una base purina y una pirimidina
- D. La complementaridad, a la direccionalidad de las dos cadenas en la doble hélice

Complementaridad


Se refiere a la interacción específica entre las bases:

En el modelo de la doble hélice de Watson y Crick, ¿cuántas pares de bases hay en una vuelta de hélice?

Antiparalelismo

Las dos cadenas son antiparalelas pues van en direcciones opuestas:

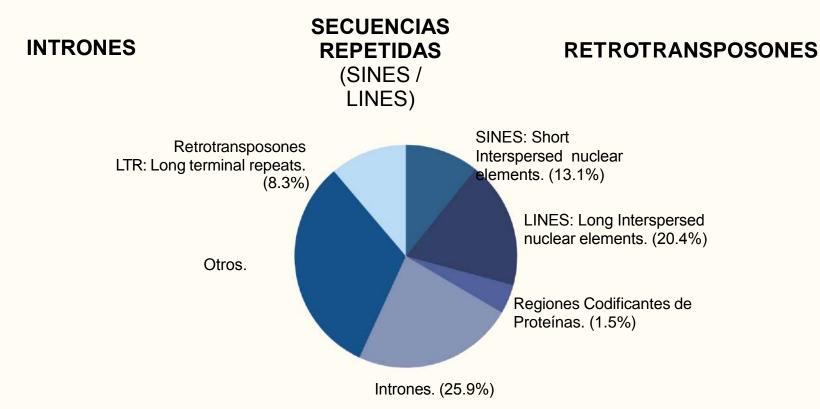
Una cadena corre de 5' \rightarrow 3 mientras que la otra corre de 3' \rightarrow 5'.

8. ¿Qué es la paradoja C?

- A. Se refiere al número de cromosomas que compone el genoma haploide de un organismo
- B. Se refiere a que el tamaño de un genoma no es proporcional al número de genes que contiene
- C. Se refiere al número de cromosomas que compone el genoma diploide de un organismo

El contenido celular de ADN se denomina valor C.

La **paradoja C** se refiere al hecho de que el tamaño del genoma de un organismo no es proporcional ni a su complejidad ni a su número de genes.


Organismo	# de cromosomas (haploide)	Genoma (pb)	# aprox. de genes
Bacteriofago X174	1	5.4 x 10 ³	11
Mycoplasma pneumonia	ne 1	8.1 x 10 ⁵	860
Escherichia coli	1	4.6 x 10 ⁶	5,295
Pseudomonas aerugino	sa 1	6.3 x 10 ⁶	6,414
Thermoplasma acidophi	ilum 1	1.5 x 10 ⁶	1,630
Plasmodium falciparum	3	2.3×10^7	5,300
Saccharomyces cerevisi	<i>iae</i> 16	1.2×10^7	6,000
Drosophila melanogaste	er 4	1.8 x 10 ⁸	13,600
Oryza sativa (arroz)	12	3.9 x 10 ⁸	28,200
Mus musculus (ratón)	20	3.1 x 10 ⁹	30,000
Homo sapiens (humano) 23	3.1 x 10 ⁹	30,000

Completar: El genoma de *Homo sapiens* es ____ mayor al de *Escherichia coli*

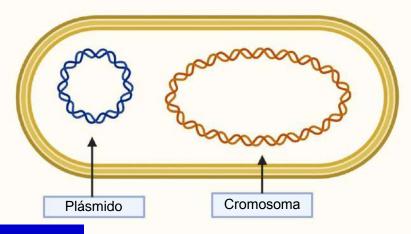
9. ¿Qué elementos contribuyen a incrementar el tamaño de los genomas en células eucariontes?

- A. Los intrones, las secuencias repetidas y los retrotransposones
- B. Los exones y las secuencias repetidas
- C. Los exones, las secuencias repetidas y los retrotransposones
- D. Los intrones y los retrotransposones

Los elementos que contribuyen a incrementar el tamaño de los genomas en células eucariontes son:

En humanos, sólo el 27.5% del genoma corresponde a genes.

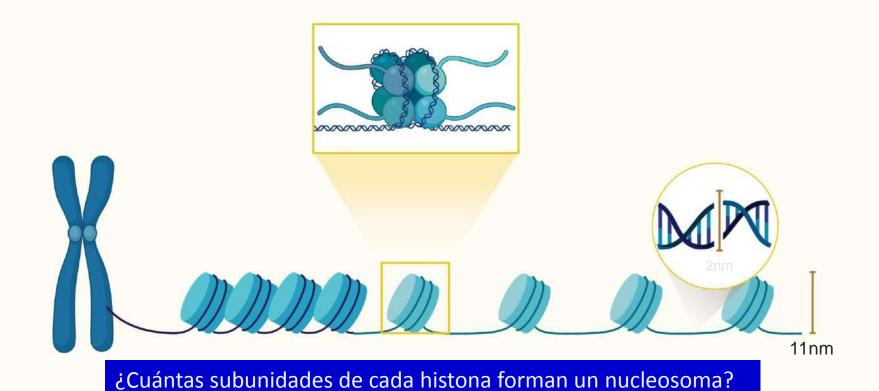
Solamente el 1.5% de estas secuencuas corresponde a regiones codificantes (exones).


¿Qué es un exón? ¿Qué es un intrón?

10. ¿Qué diferencia hay en la arquitectura de los cromosomas eucariontes y procariontes?

- A. Ninguna, tienen la misma arquitectura
- B. El cromosoma procarionte es circular, mientras que el cromosoma eucarionte es lineal
- C. El cromosoma procarionte es lineal, mientras que el cromosoma eucarionte es circular

Mientras que los cromosomas **procariontes** son **CIRCULARES**.

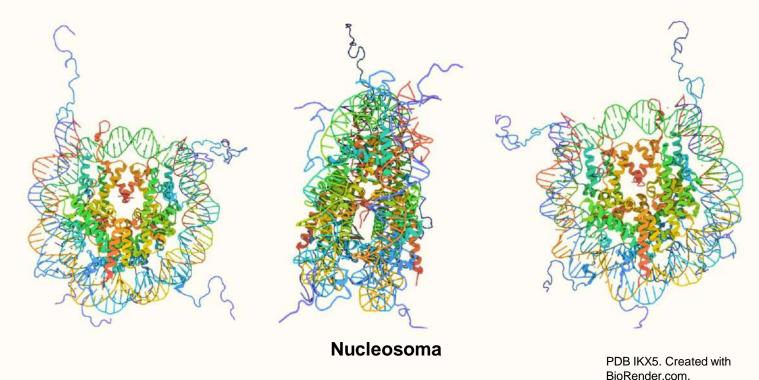

¿Cómo se llaman los extremos de los cromosomas?

11. ¿Cuál es la unidad fundamental en la organización de la cromatina eucarionte?

- A. Las cromátidas hermanas
- B. El nucleoide
- C. El centrómero
- D. El nucleosoma

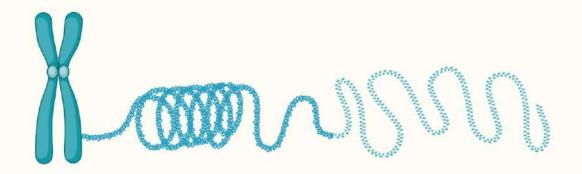
Los **nucleosomas** conforman la unidad fundamental de la cromatina

Están formados por un **octámero de histonas** [(H2A)₂, (H2B)₂, (H3)₂, (H4)₂] asociado a ≈ 150 pb de ADN.


12. ¿Qué característica de las histonas facilita su interacción con el ADN?

- A. Su alto contenido de aminoácidos ácidos, como glutámico y aspártico
- B. Su alto contenido de aminoácidos fosforilables, como serina y treonina
- C. Su alto contenido de aminoácidos básicos, como lisina y arginina
- D. Su alto contenido de aminoácidos básicos, como leucina y alanina

Las **histonas** tienen un alto contenido de aminoácidos **básicos** (Lys y Arg; en particular, en la región N-terminal) lo que facilita su asociación con el ADN por interacciones electrostáticas.


	%LYS	%ARG
H1*	28	2.6
H2A	11	9.3
H2B	16	6.4
H3	10	13.3
H4	11	13.7

*No forma parte del nucleosoma PERO TAMBIÉN INTERACTÚA CON EL ADN.

13. ¿Cómo se clasifica la cromatina según sus propiedades citogenéticas?

- A. Eucromatina y heterocromatina
- B. Eucromatina y cromátidas hermanas
- C. Heterocromatina e Isocromatina
- D. Eucromatina e Isocromatina

Heterocromatina

Segmentos del cromosoma que se tiñen fuertemente y son regiones supercondensadas.

Corresponde a secuencias repetitivas de ADN, regiones donde hay pocos genes.

Se divide en:

- ✓ Heterocromatina constitutiva. Se mantiene supercompactada en todas las fases del ciclo celular (Centrómeros, telómeros).
- ✓ Heterocromatina facultativa. Su grado de compactación varía a lo largo del ciclo celular y desarrollo.

Eucromatina

Segmentos del cromosoma que no son visibles durante la telofase e interfase (se tiñen pobremente).

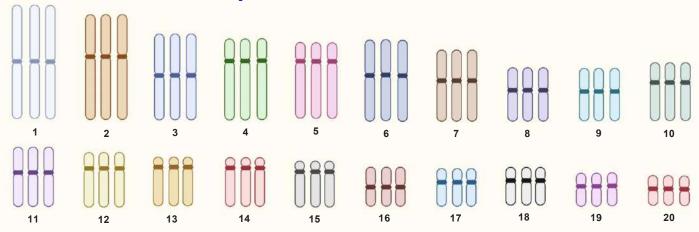
Son regiones dinámicas del cromosoma que se condensan y se descondensan.

Corresponde a secuencias que contienen genes y que son transcripcionalmente activas.

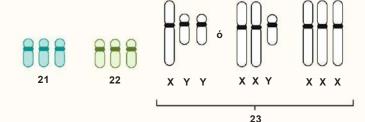
¿Por qué decimos que la cromatina es un complejo dinámico?

14. ¿Qué es una euploidía y cómo puede explicarse?

- A. Condición en que se tiene un cromosoma adicional
- B. Condición en que se tiene un múltiplo de la dotación cromosómica básica
- C. Condición en que falta un cromosoma
- D. Condición de los gametos que tienen un solo juego de cromosomas

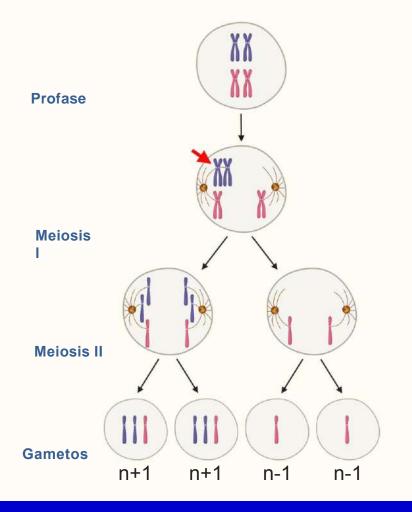

Una **euploidía** es una patología asociada al cariotipo, caracterizada por tener un múltiplo de la dotación cromosómica básica.

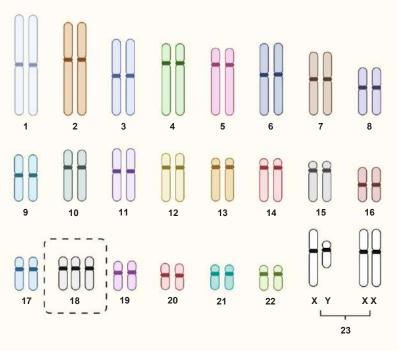
Por ejemplo: Triploidía (3n = 69)


Ocurre si:

- ✓ Espermatocito diploide.
- ✓ Ovocito diploide.
- ✓ Dispermia (fecundación por dos espermatozoides) durante la fertilización.

Los productos no son viables.


¿Cómo se puede formar un gameto diploide?



15. ¿Qué es una trisomía y cómo puede explicarse?

- A. Condición en que se tiene un cromosoma adicional
- B. Condición en que se tiene un múltiplo de la dotación cromosómica básica
- C. Condición en que falta un cromosoma
- D. Condición de los gametos que tienen un solo juego de cromosomas

Una **aneuploidía** es una patología asociada al cariotipo en la que el número cromosómico difiere del silvestre en dotación cromosómica.

CAUSA: NO DISYUNCIÓN

El defecto en disyunción puede ocurrir en la meiosis I o II.

La **TRISOMÍA** (2n + 1) es la aneuploidía más común.

Puede ocurrir para cualquier cromosoma.

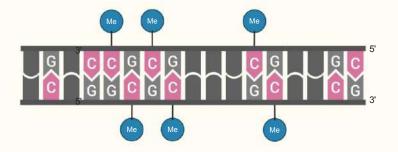
Solamente las trisomías **13**, **18** y **21** generan productos viables.

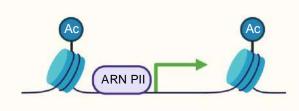
¿Por qué ocurre el defecto en disyunción?

16. ¿Qué es la epigenética?

- A. Es el estudio de las mutaciones heredables
- B. Es el estudio de los daños en el ADN
- C. Es el estudio de cambios heredables sin que ocurra alteración en la secuencia de ADN
- D. Es el estudio de los mecanismos de reparación del ADN

EPIGENÉTICA

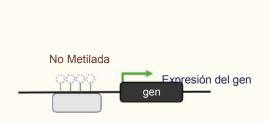

Es el estudio de los cambios heredables en la expresión genética que ocurren SIN que se haya alterado la secuencia de nucleótidos.

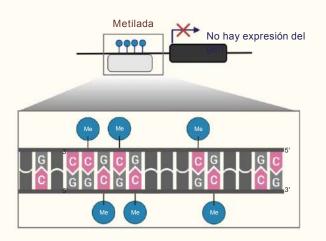

Los cambios epigenéticos que ocurren en la cromatina son:

✓ Metilación del ADN (formación de 5-metil citosina)

✓ Modificaciones covalentes de las histonas (fosforilación, acetilación, metilación).

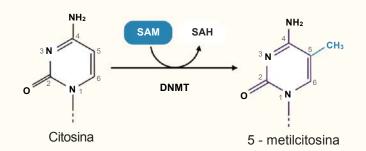
√ Isoformas de histonas


¿Se pueden considerar los cambios epigenéticos como mutaciones? ¿Por qué?


17. ¿Qué modificación epigenética altera al ADN y cómo afecta a la expresión genética?

- A. La metilación de la timina y reprime la expresión
- B. La acetilación de la citosina y activa la expresión
- C. La acetilación de la citosina y reprime la expresión
- D. La metilación de la citosina y reprime la expresión

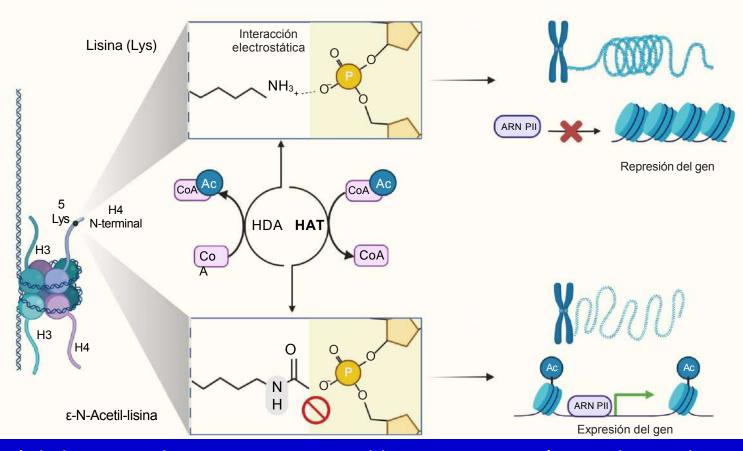
Metilación del ADN


Consiste en la metilación (-CH3) de las **citosinas** en la posición 5, en regiones regulatorias del control de la expresión de genes, llamadas **islas CpG**.

La metilación en las islas CpG se asocia con REPRESIÓN DE LA EXPRESIÓN GÉNICA.

Las enzimas que metilan el ADN se denominan **ADN METIL TRANSFERASAS (DNMT)** y emplean **S-ADENOSIL METIONINA (SAM)** como donador del grupo metilo.

¿Cuál es la diferencia entre una isla CpG y un par de bases C-G?


18. ¿Cómo afecta la acetilación de histonas a la expresión genética?

- A. La acetilación de histonas se asocia a activación de la expresión genética
- B. La acetilación de histonas se asocia a represión de la expresión genética
- C. La acetilación de histonas no tiene efecto sobre la expresión genética

Las **histonas** son proteínas ricas en lisina (Lys), un aminoácido básico que interactúan con el ADN.

Al **acetilar a la lisina**, se neutraliza su carga positiva por lo que se desestabiliza la interacción ADN – proteína.

En consecuencia, la cromatina se relaja; haciéndose más accesible a la maquinaria transcripcional y FACILITANDO LA EXPRESIÓN GÉNICA.

¿Cuál(es) de las cuatro historias son susceptibles a un mayor número de acetilaciones?

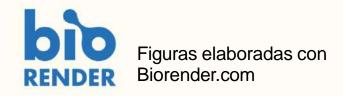
Referencias:

- Bergtrom, G. **Basic Cell and Molecular Biology**. UWM Digital Commons. (2018).
- Brooker, R.J. **Genetics: Analysis and Principles**. 4th. Ed. McGraw Hill. (2012).
- Griffiths; A.J.F., Gelbart, W.M., Miller, J.H., Lewontin, R.C. An Introduction to Genetic Analysis. 8th. Freeman Publishers. (2005).
- Krebbs, J.E., Goldstein, E.S., Kilpatrick, S.T. Lewin's Essential Genes. 3th. Ed. Jones & Bartlett Learning. (2013).
- Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Martina, K.C., Yaffe, M., Amon, A. Molecular Cell Biology. 9th. Ed. Freeman Publishers. (2021).
- McLennan, A., Bates, A., Turner, P., White, M. Bios. Notas Instantáneas de Biología Molecular. 4ta. Ed. Mc. Graw Hill Ed. (2013).

Clave de Respuestas:

Pregunta	Respuesta
1	Α
2	В
3	С
4	D
5	С
6	Α
7	С
8	В
9	Α
10	В

Pregunta	Respuesta
11	D
12	С
13	Α
14	В
15	Α
16	С
17	D
18	Α


Agradecimientos

Proyecto PAPIME PE201017: Enseñanza interactiva mediante el empleo de las TIC's para la asignatura Genética y Biología Molecular.

Proyecto PAPIME PE206021: Elaboración de material para promover el aprendizaje activo de asignaturas de Bioquímica y Biología Molecular en la Facultad de Química.

Se agradece la participación de Jennifer Martínez Quiroz en la elaboración y edición de diapositivas.

